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Abstract

A feature selection procedure is used to successively remove features one-by-one from a statistical classi®er by an

iterative backward search. Each classi®er uses a smaller subset of features than the classi®er in the previous iteration.

The classi®ers are subsequently combined into a cascade. Each classi®er in the cascade should classify cases to which a

reliable class label can be assigned. Other cases should be propagated to the next classi®er which uses also the value of a

new feature. Experiments demonstrate the feasibility of building cascades of classi®ers (neural networks for prediction

of atrial ®brillation (FA)) using a backward search scheme for feature selection. Ó 1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

In the ®elds of pattern recognition and image
processing, statistical classi®ers are often trained
to perform classi®cation tasks such as texture
segregation (Egmont-Petersen and Pelikan, 1999),
image segmentation (Tian et al., 1999) or object
recognition. In general, a large number of features
is available or can be de®ned, although often only
a few features determine the most likely class
membership of most cases or pixels. For such ap-
plications, it is desired to prune redundant features
and thus possibly decrease the acquisition costs

(e.g., computational costs) associated with mea-
suring the features.

We will present an approach that uses a feature
selection procedure to construct a so-called cas-
cade of statistical classi®ers. Our goal is to reduce
the average feature acquisition costs per case by
classifying subsets of cases using as few features as
possible in a multistage classi®cation scheme (Pu-
dil et al., 1992). For that purpose, we ®rst build a
classi®er (a feed-forward neural network) using all
features and prune those that are completely re-
dundant. The remaining n features are subse-
quently pruned one-by-one according to a
backward search scheme. Each step results in a
classi®er with one feature less than its predecessor.
Pruning can be continued until all n classi®ers,
using 1; 2; . . . ; n input values, have been built. The
resulting statistical classi®ers are combined into a
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cascade which constitutes a statistical classi®er in
itself. The ®rst classi®er in the cascade obtains as
input vector the minimally required set of feature
values (e.g., 1 feature value) and should, if possi-
ble, only assign reliable class labels to the cases.
Other cases should be left unclassi®ed and propa-
gated to the next classi®er in the cascade. The
subsequent classi®er requires the value of one
more feature to decide whether reliable class labels
can be assigned to the propagated cases.

2. Background

Classi®cation entails assigning a class label to a
case characterized by an n-dimensional feature
vector x. Let p�xjxj� denote the n-dimensional
class-conditional probability density function
(PDF) for class j when the n features are contin-
uous and let p�xjxj� denote the n-dimensional
class-conditional probability function (PF) when
the features are discrete. 1 In general, classi®ers
partition the feature space into disjoint regions Rj,
j � 1; . . . ; c, with c denoting the number of classes.
For a minimal error-rate classi®er, cases x that
occur in the region

Rn
j � fx 2 rng�x�jP�xj�P �xjxj�

> P �xi�P �xjxi� 8i 6� jg �1�
have the highest posterior probability of belonging
to class j and are classi®ed as such. The function
rng(x) denotes the range of x. De®ne the correct-
ness of a classi®er based on n features as

qn �
Xc

j�1

P�xj�P �x 2 Rn
j jxj� �2�

and the marginal contribution of feature k as

Dq 6�k �
Xc

j�1

P �xj� P�x 2 Rn
j jxj�

�
ÿ P �x 6�k 2 Rnÿ1

j jxj�
�
; �3�

with x6�k denoting an nÿ 1 dimensional feature
vector that is equal to x except for feature k that
has been removed, and Rnÿ1

j the Bayes optimal
region similar to Rn

j but de®ned for the nÿ 1 di-
mensions excluding dimension k.

When features are pruned one-by-one from a
minimal error-rate classi®er according to their
marginal contribution, e.g., using the LMS-prun-
ing scheme (Egmont-Petersen et al., 1998), the
correctness is a monotonous, concave function of
the number of features used (see ÔMinimal error-
rate classi®erÕ in Fig. 1). Removing features always
leads to a decrease in correctness, Dq 6�k P 0. The
correctness of statistical classi®ers ®tted on a
training set, however, might increase, Dq 6�k < 0,
because of overgeneralization. Experiments have
shown that contrary to the k-nearest neighbor and
Parzen window classi®ers, neural networks are
unlikely to exhibit peaking (Hamamoto et al.,
1996), a quality which makes backward search a
suited feature selection scheme for neural net-
works. Another advantage of a backward search
scheme is that it takes all mutual dependencies
between features into account.

3. A cascade of classi®ers

A set of classi®ers obtained from a backward
search feature selection procedure can be combined

1 Henceforth, only classi®cation problems with discrete

features are considered. For a treatment of continuous features,

see (Egmont-Petersen et al., 1998).

Fig. 1. The three curves indicate the correctness (fraction of

correctly classi®ed cases) of the minimal error-rate classi®er, of

a statistical classi®er that exhibits peaking and of a classi®er

where features are pruned while the (di�erent) acquisition costs

of the features are taken into account.
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into a cascade by ®rst pruning completely su-
per¯uous features. Subsequently, the features that
have in¯uence on the performance of the classi®er
are pruned one-by-one. Which features should be
pruned depends on the costs of di�erent mis-
classi®cations and the acquisition costs of the
features.

3.1. Pruning super¯uous features

The ®rst step in any feature selection procedure
entails removing redundant features. Whether a
feature is redundant, depends on which other
features are provided as input to the classi®er. We
have earlier presented a feature measure called
potential in¯uence (Egmont-Petersen et al., 1998)
which is the probability that the value of feature k
can possibly determine which classi®cation is as-
signed to a case

/k � qnÿ
Xc

j�1

P �xj�

�
X

x6�k2Rnnk
j

P �x6�kjxj�g Sj�x6�k�ÿ � rng�xk�
�
; �4�

with

Sj�x6�k� � xk 2 rng�xk� P �xkjx 6�k;xj�
P�xkjx 6�k;xi�
�����

>
P �xi�P �x6�kjxi�
P �xj�P �x6�kjxj� 8i 6� j

�
;

�5�

the set of xk (for given x 6�k) for which x falls into
Rn

j . Rnnk
j is the set of x 6�k for which Sj�x6�k� is not

empty, see (Egmont-Petersen, 1996). The function
g(e) is 1 when the expression e is True, otherwise
g(e) is 0. As proven by Egmont-Petersen et al.
(1998), the potential in¯uence of a feature is a
lower bound for the correctness that can be ob-
tained from a classi®er after this feature has been
removed. The potential in¯uence of a redundant
feature is zero.

3.2. Pruning relevant features

After all redundant features have been re-
moved, the n (remaining) features that actually

in¯uence the classi®cation of cases are subse-
quently pruned one-by-one according to a back-
ward search scheme. The decrease in correctness
Dq6�k that results from pruning a feature depends
on the modus of classi®cation task: Quinlan (1993)
distinguishes between sequential and parallel clas-
si®cation tasks. In parallel classi®cation tasks, all
features are relevant for the classi®cation of each
case. In sequential classi®cation tasks, only a few
features are relevant for the classi®cation of each
case. Whether the remaining features are relevant
for the classi®cation of a case depends on the
values of one or more of the other features. Se-
quential and parallel classi®cation tasks form two
ends of a continuum. For a classi®cation task that
is primarily parallel, pruning only a few features
will lead to a large decrease in performance, i.e.,
the marginal contribution Dq 6�k; k � 1; . . . ; n, of
each feature is relatively high. For a sequential
classi®cation task, on the other hand, some fea-
tures are likely to have small marginal contribu-
tions.

The in¯uence of a feature on classi®er perfor-
mance is not always an optimal assessment crite-
rion for feature selection. Assuming that a class
label should eventually always be assigned to each
case, three situations can be discerned:
1. All acquisition costs are equal and all misclas-

si®cations imply the same loss. A misclassi®-
cation should always be avoided when
possible.

2. The acquisition costs di�er but all misclassi®ca-
tions imply the same loss.

3. The acquisition costs di�er and each type of
misclassi®cation is associated with a speci®c
loss.

In the ®rst situation, the best assessment criterion
is the marginal contribution of a feature, Dq 6�k.
When the acquisition costs di�er, one has to
make a trade-o� between the marginal contri-
bution of a feature, its acquisition costs and the
costs of misclassifying cases. In the third situa-
tion, the assessment criterion should be based on
the marginal risk of the classi®er computed using
a cost matrix K, see (Duda and Hart, 1973). The
®rst and second situations will be analyzed here;
the third situation is considered by Pudil et al.
(1992).
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3.3. Pruning relevant features ÿ equal acquisition
costs

In this situation, one wants to prune features
one-by-one according to their marginal contribu-
tion. This entails building a classi®er from all n
features, computing the marginal contribution of
each feature, Dq6�k, and pruning the feature which
leads to the smallest decrease in performance when
removed from the classi®er. This procedure can be
repeated until only one feature remains.

3.4. Pruning relevant features ÿ di�erent acquisition
costs

When the acquisition costs of features di�er, it
is necessary to specify the trade-o� between a
misclassi®ed case and the costs of measuring each
feature. Let c(xk) denote the costs associated with
measuring feature k for a case. The trade-o� be-
tween acquisition costs and the marginal contri-
bution for two successive classi®ers, one with and
the other without feature k, we call the marginal
utility of a feature

ck � Dq 6�kc�xjx� ÿ P �£�c�xk� �6�

with c�xjx� denoting the costs of a misclassi®ed
case and P �£� the probability that a case is left
unclassi®ed by the ®rst of the two classi®ers. When
ck is used as the pruning criterion in a backward
search, features with a negative marginal utility
should be abandoned, as the resulting increase in
correctness yielded by adding the feature to the
classi®er is not compensated by the excess mea-
surement costs. Although the (minimal error-rate)
classi®er that uses all n features will have the
maximal correctness, the assumption that the
correctness is a concave function of the number of
features used does not hold when the marginal
utility ck is used as the pruning criterion (see
Fig. 1).

3.5. Building a cascade of classi®ers

When the features have been pruned one-by-
one by a backward-search scheme, the n classi®ers

can be combined into a so-called cascade. Its
classi®ers in concert are able to classify cases using
increasingly larger subsets of features. In the se-
quel, we de®ne a cascade of classi®ers C. Let v
denote an n-dimensional vector indicating which
features are needed by a particular classi®er in
the cascade, vk � 1 when feature k is required as
input and vk � 0 when feature k is not. De®ne
the indicator matrix V � �v1;v2; . . . ;vn�, withP

i�1;...;n vi;l � l. V speci®es the subsets, 1 to n, of
features used by a cascade of statistical classi®ers.
De®ne a Bayesian cascade

C � fV ;B;Zg; �7�

with B � �b1; b2; . . . ; bn� indicating the ordered set
of (cascaded) classi®ers and Z a set of discrimi-
nant functions used to assign a class label from
the vector of posterior probabilities ol; oj;l �
P l�xjjx 6�vl�. The vector x 6�vl contains the features
used as input to classi®er l. Z could, e.g., be
de®ned as a set of thresholds, Z � fz1; z2; . . . ;
znÿ1g, with each vector zl pertaining to a particular
classi®er in the cascade and element zj;l the
threshold used by the classi®cation rule

L�ol� � j : oj; l ÿ oi; l > zj; l;
£ : otherwise:

�
�8�

with oj;l the maximal posterior probability (output
of classi®er l) and oi;l the second highest posterior
probability. The empty set B indicates that a case
ol � bl�x6�vl� remains unclassi®ed and is propa-
gated to the next classi®er l� 1 in the cascade. By
varying the thresholds Z, one can control both
how many features are typically needed to assign a
class label to a case and the total performance of
the cascade. Increasing the threshold values zl

implies that cases are more likely to be propagated
to the next classi®er l� 1 in the cascade. Fig. 2
illustrates the principle of a cascade with three
classi®ers designed for a three-class problem. First,
one feature is measured and provided as input to
the ®rst classi®er. The classi®cation rule either
assigns a reliable class label to a case or propagates
it to the next classi®er after a second feature value
has been measured.
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3.6. Calibration of the cascade ÿ equal acquisition
costs

In the simple case where all features have equal
acquisition costs, the relevant features in the cas-
cade C have been pruned according to their mar-
ginal contribution. Denote with X the set of
training cases and with Xl the subset of cases
classi®ed correctly by classi®er l,

X l � fx6�vl 2 xjjP l�xjjx 6�vl� > P l�xijx 6�vl� 8i 6� jg:
�9�

Denote with Ol the corresponding posterior
probabilities computed for the cases in Xl. Denote
with Xnnl the subset of cases that are correctly
classi®ed by classi®er n (based on all features) but
classi®ed wrongly by classi®er l,

Xnnl � Xn n X l: �10�

In the situation where one wants to obtain a cas-
cade with the maximal correctness given equal
feature acquisition costs, the classi®cation rule zl

of each classi®er l in the cascade should be cali-
brated such that all cases in Xnnl are left unclassi-
®ed by classi®er l. When Onnl is the corresponding
matrix containing the output vectors of classi®er l,
the threshold vector zl can be assigned as follows:

zj;l � bj;l � ej;l; �11�

with

bj;l � max
r

or;j

� ÿ or;u

	
; or;j � max

i
�or;i�;

or;u � max
i 6�j
�or;i�; or 2 Onnl;

�12�

which indicates the maximal di�erence between
the posterior probabilities of the correct, winning
class j and its closest competitor. ej;l > 0 is a
parameter related to the standard deviations rr;j

and rr;u of the estimates Onnl. Note that the rule
(12) ensures that the threshold vector of each
classi®er in the cascade can be chosen indepen-
dently of the threshold vectors of the subsequent
classi®ers.

3.7. Calibration of the cascade ÿ varying acquisition
costs

In the second situation characterized in Section
3.2, the acquisition costs vary between the features
and a trade-o� should be speci®ed between a
misclassi®cation and the costs associated with
measuring each feature. Assuming that the fea-
tures have been pruned according to their

Fig. 2. Three classi®ers are combined into a cascade. The ®rst classi®er assigns class labels to cases that can be classi®ed reliably

whereas other cases are propagated to the next classi®er. The small rectangle next to each classi®er represents the classi®cation rule that

is used corresponding to the threshold vector z. For each propagated case, an additional feature is measured.
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marginal utility ck de®ned in Eq. (6), the threshold
vector of classi®er l should be set such that

dck

dz
� 0() �ql�1

jz ÿ ql
jz� c�xjx� � P l

z �£�c�xk�
�13�

for each classi®er l � 1; . . . ; nÿ 1, in the cascade.
ql
jz denotes the correctness of classi®er l in the

cascade and P l
z �£� the probability that this clas-

si®er leaves a case unclassi®ed, both for a given
threshold vector z. It is clear that the correctness of
classi®er l and the probability that it leaves cases
unclassi®ed both depend on how the preceding
classi®ers in the cascade are calibrated. So a total
cost function needs to be minimized.

4. Experiments

Two cascades were built from neural networks
trained for a di�cult classi®cation task: the pre-
diction whether a patient will develop atrial ®-
brillation (AF) directly after cardiac surgery. The
classi®cation task is based on one continuous and
10 discrete features, see Table 1. These data were
collected from 600 patients which had been mon-
itored subsequent to cardiac surgery. Eight in-

complete cases were removed so 592 cases were
available for training and testing the networks,
P�AF� � 0:53. The cases were divided into a
training set consisting of 474 cases and a test set
consisting of 118 cases.

4.1. First experiment

In this experiment, we ®rst investigated whether
the potential in¯uence measure was suited as an
assessment criterion for feature selection according
to a backward search scheme. The encoding
scheme of the features is indicated in Table 1.
Earlier experiments with these data had indicated
that a topology with two hidden nodes resulted in
the best generalization performance on a test set,
so this network topology was kept during all ex-
periments. Five neural networks with di�erent
initial weight con®gurations were trained for 3000
cycles with back-propagation, o�-line learning.
The learning rate was set to 0.001, momentum to
0.1. The average correctness on the test set was
0.7458 ��0:0053�.

The potential in¯uence /k; k � 1; . . . ; 11, was
computed for each of the 11 features on the
training set. The feature with the smallest potential
in¯uence was removed and ®ve networks were
trained on the reduced feature set. When more

Table 1

The 11 features available to the classi®ersa

Feature Description Outcomes Type Coding

1 Whether the patient had AF when referred to the

clinic

No, parox.,

chronic

Nom. 100, 010, 001

2 Whether post-operative beta-blocker was prescribed Yes, no Bin. 0, 1

3 Age Real number Cont. Real number

4 Type of operation CABG, valve,

CABG + valve

Nom. 100, 010, 001

5 Contraindication for beta-blockers Yes, no Bin. 0, 1

6 Chronic obstructive pulmonic disease requiring

broncho-dilating drugs

Yes, no Bin. 0, 1

7 History of cong. heart failure Yes, no Bin. 0, 1

8 Ejection fraction < 40% Yes, no Bin. 0, 1

9 Post-operative heart failure requiring inotropic

agents

Yes, no Bin. 0, 1

10 Sinus bradycardia (<50 bpm) or sign. atrioventricular

cond. delay

Yes, no Bin. 0, 1

11 Peri- or post-operative sinus dysfunction or

atriventricular cond. disturbanced

Yes, no Bin. 0, 1

a Three types of features are distinguished: nominal, binary and continuous. In total 592 complete cases had been collected.
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than one feature had the same smallest potential
in¯uence, all these features were removed. This
approach led to inferior classi®ers as feature 4 was
removed rather early in the backward search
procedure (when seven features remained). With-
out this feature, too many cases become misclas-
si®ed. So potential in¯uence is only suited as an
assessment criterion when completely redundant
features can be identi®ed, /k � 0.

Pruning features using a backward search was
continued using the marginal contribution as the
assessment criterion. The correctness on the
training and test sets is shown in Table 2. Pruning
was stopped when two features remained. The
performance on the test set peaked when four and
®ve features were used, whereas seven features

resulted in a slightly higher performance than the
con®gurations with four and ®ve features.

4.2. Second experiment

In the second experiment, we investigated the
possibility of building a cascade of neural net-
works. Two cascades were built: one consisting of
2 networks (2 and 3 features) and another con-
sisting of 3 networks (2, 3 and 5 features). The
reason that a network with 4 features was not used
in the second cascade was that no single network
among the 5 networks trained with 4 features had
a performance (on the training set) that exceeded
the best network using 3 features.

Table 2

Performance of ®ve neural networks (two hidden nodes) on the training and test sets as a function of the number of features used

Correctness 2 features 3 features 4 features 5 features 6 features 7 features

Training set

l 0.7489 0.7506 0.7523 0.7566 0.7553 0.7637

r 0.0000 0.0021 0.0017 0.0028 0.0071 0.0065

Test set

l 0.7288 0.7356 0.7407 0.7407 0.7322 0.7509

r 0.0000 0.0083 0.0086 0.0115 0.0042 0.0068

Features 1, 2 1, 2, 4 1, 2, 4, 10 1, 2, 4, 10, 11 1ÿ4, 10, 11 1ÿ4, 9ÿ11

Table 3

Correctness (fraction of correctly classi®ed cases), coverage (fraction of classi®ed cases) and number of actually classi®ed cases for each

classi®er in the two cascades computed on the training set (474 cases)a

Training set Network 1 (2 f.) Network 2 (3 f.) Network 3 (5 f.)

Correctness 0.7583 0.6522

Coverage 0.9515 1.0000

# cl. cases 451 23

Avg. feature costs 2.05

Total correctness 0.7532

Correctness 0.7921 0.7746 0.6500

Coverage 0.6392 0.4152 1.0000

# cl. cases 303 71 100

Avg. feature costs 2.78

Total correctness 0.7595

a The ®rst cascade contains two networks, one that uses 2 features as input, the other network 3 features. The second cascade contains

three networks, one that uses 2 features as input, the other network 3 features and the last 5 features. For each cascade, the average

number of features measured per case and the total correctness are computed.
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The threshold vector z1 in the ®rst cascade was
calibrated such that no case, which was classi®ed
correctly by the network with 3 features, was
misclassi®ed by the ®rst network with 2 features.
Table 3 shows the correctness (fraction of classi-
®ed cases assigned a correct class label), coverage
(fraction of cases assigned a class label, see Eg-
mont-Petersen et al., 1994) per network and the
average number of features measured in the cas-
caded classi®er computed on the 474 cases in the
training set. Table 4 contains the same statistics
but computed on the 118 test cases.

In the second cascade, the two threshold vec-
tors, z1 and z2, were calibrated such that no case,
which was classi®ed correctly by the network with
5 features, was misclassi®ed by the two preceding
networks (using 2 and 3 features). Tables 3 and 4
show the performance of each of the classi®ers, the
average number of features measured and the
correctness of the cascade computed on the train-
ing and test sets.

5. Discussion and conclusion

The experiment with the cascades indicates that
the measurement of extra features results in a
higher total correctness, while the average number
of features measured may be kept low. So for se-
quential classi®cation problems, building a cascade

is worthwhile. The extent to which the classi®ca-
tion task is sequential determines the decrease in
average acquisition costs that can be obtained
when building a cascade.

In general, prototypical cases can often be
classi®ed reliably using only a few feature values,
whereas borderline cases can only be classi®ed
when most of the n feature values are known.
Consequently, prototypical cases can be assigned a
reliable class label early in the cascade, whereas
borderline cases are propagated further requiring
more features to be measured.

For classi®cation problems where the perfor-
mance of the classi®er peaks, adding particular
features leads to a decrease in correctness. Such
features should not be used in a cascade. So a
thorough feature selection procedure is a prereq-
uisite for building a cascade. A consequence is that
several neural networks need to be trained and
should be treated as an ensemble. Moreover, the
certainty factor ej;l can only be chosen optimally
when the standard deviation rr;j of the output
vectors of the classi®ers is estimated from such an
ensemble. In the classi®cation problem considered
here, the prediction of atrial ®brillation, a peak
occurs around 4ÿ5 features. Building a cascade
with 7, 8±11 features would require larger training
and test sets.

The applicability of the cascade concept de-
pends also on the domain. In digital image pro-

Table 4

Correctness, coverage and number of actually classi®ed cases for each classi®er in the two cascades computed on the test set (118

cases)a

Test set Network 1 (2 f.) Network 2 (3 f.) Network 3 (5 f.)

Correctness 0.7615 0.5556

Coverage 0.9237 1.0000

# cl. cases 109 9

Avg. feature costs 2.08

Total correctness 0.7458

Correctness 0.7595 0.9333 0.6667

Coverage 0.6695 0.7692 1.0000

# cl. cases 79 30 9

Avg. feature costs 2.48

Total correctness 0.7966

a For each cascade, the average number of features measured per case and the total correctness are computed.
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cessing, one is typically interested in lowering the
computational complexity by removing super¯u-
ous features. When the performance signi®cantly
drops, however, the pruning procedure will be
stopped. For medical classi®cation tasks such as
diagnosis, the acquisition of certain features may
be undesired (e.g. performing a brain biopsy) and
should be postponed as long as possible. Building
a cascade under such circumstances has only
brie¯y been considered here and is the subject of
future research.

Discussion

Duin: You said that this approach is di�erent
from decision trees. But once you consider the
output of classi®ers as new features, then I think it
is very similar to building a decision tree.

Egmont-Petersen: That is true. If you choose
that option, you are right. I have not experimented
with using both the features and the output of the
previous classi®er as input to the subsequent
classi®er. I only propagated the features that were
already known. This is certainly an interesting
extension to the approach.

Pudil: I just would like to comment that your
approach seems to have very much in common
with what we presented at the ICPR in The Ha-
gue in 1992. (Note of the editors: P. Pudil, J.
Novovicov�a, S. Blah�a, J. Kittler. Multistage Pat-
tern Recognition with Reject Option. Proceedings
of the 11th ICPR, IEEE Computer Society Press,
vol. II, Los Alamitos, 1992, pp. 92±95). We pre-
sented the idea of a hierarchical feature selection
scheme or a set of feature selection classi®ers.
That was also based on the idea of acquisition
cost of features. We derived an average cost
function for decision making, taking into account
the acquisition cost. For example, we started with
cheaper features to classify simple cases, and if
such cases were not classi®ed unambiguously,
they were sent to the next classi®er, and so on.
We found that such a scheme yields in most cases
much lower average decision risk than using a
one-level scheme. The idea was to process simple
cases with fewer and cheaper features and pro-

cessing only the very complicated patterns or
cases with more advanced, more informative, but
more costly features.

Egmont-Petersen: So that is a positive result, I
understand, and it supports the proposed method.

Inza: Just a question: is your proposed measure
monotonic as a function of the number of fea-
tures?

Egmont-Petersen: That is a very good question.
It depends on whether there is a peak. This again
depends on the speci®c combination of the classi-
®er, the domain and the number of cases. So, for
any given problem, I cannot guarantee that there
will be no peak. On the contrary, I would say that
for many domains, depending on the size of the
feature set and the number of cases, there will be a
peak. So that will have to be investigated to begin
with.

Gelsema: In feature selection there is always
the problem of optimality. Now I do not know if
in this case you can de®ne optimality, and my
question is: did you de®ne optimality and can you
then guarantee that your subset is the optimal
subset?

Egmont-Petersen: First of all, when you are
looking for the optimal subset of features, if you
run into the peaking phenomenon, the only way to
®nd the optimal feature subset is by exhaustive
search. In this work I have presented formulas
which de®ne optimality as the optimal trade-o�,
the marginal utility as I call it. This gives the op-
timal trade-o� between feature acquisition costs
and the cost of misclassifying cases. I present some
formulas on how to ®nd the equilibrium between
these costs by setting the thresholds.
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